Preclinical evaluation of 1H-benzylindole derivatives as novel human immunodeficiency virus integrase strand transfer inhibitors.
نویسندگان
چکیده
We have identified 1H-benzylindole analogues as a novel series of human immunodeficiency virus (HIV) integrase inhibitors with antiretroviral activities against different strains of HIV type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strain MAC(251) [SIV(MAC(251))]. Molecular modeling and structure-activity relationship-based optimization resulted in the identification of CHI/1043 as the most potent congener. CHI/1043 inhibited the replication of HIV-1(III(B)) in MT-4 cells at a 50% effective concentration (EC(50)) of 0.60 microM, 70-fold below its cytotoxic concentration. Equal activities against HIV-1(NL4.3), HIV-2(ROD), HIV-2(EHO), and SIV(MAC(251)) were observed. CHI/1043 was equally active against virus strains resistant against inhibitors of reverse transcriptase or protease. Replication of both X4 and R5 strains in peripheral blood mononuclear cells was sensitive to the inhibitory effect of CHI/1043 (EC(50), 0.30 to 0.38 microM). CHI/1043 inhibited integrase strand transfer activity in oligonucleotide-based enzymatic assays at low micromolar concentrations. Time-of-addition experiments confirmed CHI/1043 to interfere with the viral replication cycle at the time of retroviral integration. Quantitative Alu PCR corroborated that the anti-HIV activity is based upon the inhibition of proviral DNA integration. An HIV-1 strain selected for 70 passages in the presence of CHI/1043 was evaluated genotypically and phenotypically. The mutations T66I and Q146K were present in integrase. Cross-resistance to other integrase strand transfer inhibitors, such as L-708,906, the naphthyridine analogue L-870,810, and the clinical drugs GS/9137 and MK-0518, was observed. In adsorption, distribution, metabolism, excretion, and toxicity studies, antiviral activity was strongly reduced by protein binding, and metabolization in human liver microsomes was observed. Transport studies with Caco cells suggest a low oral bioavailability.
منابع مشابه
Microwave assisted organic synthesis (MAOS) of small molecules as potential HIV-1 integrase inhibitors.
Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). In recent years our research group has been engaged in the stucture-function study of this enzyme and in the development of some three-dimensional pharmacophore models which have led to the identification of a large series of potent HIV-1 integrase strand-transfe...
متن کاملDihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore.
We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that...
متن کاملPreclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase.
GS-9160 is a novel and potent inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN) that specifically targets the process of strand transfer. It is an authentic inhibitor of HIV-1 integration, since treatment of infected cells results in an elevation of two-long terminal repeat circles and a decrease of integration junctions. GS-9160 has potent and selective antiviral activity...
متن کاملPreferential inhibition of the magnesium-dependent strand transfer reaction of HIV-1 integrase by alpha-hydroxytropolones.
Integration is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1); therefore, inhibitors of HIV-1 integrase are candidates for antiretroviral therapy. Two 7-hydroxytropolone derivatives (alpha-hydroxytropolones) were found to inhibit HIV-1 integrase. A structure-activity relationship investigation with several tropolone derivatives from The National Cancer Institute...
متن کاملRous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding.
Rous sarcoma virus (RSV), like all retroviruses, encodes an integrase protein that is responsible for covalently joining the reverse-transcribed viral DNA to host DNA. We have probed the organization of functions within RSV integrase by constructing mutant derivatives and assaying their activities in vitro. We find that deletion derivatives lacking the amino-terminal 53 amino acids, which conta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 52 8 شماره
صفحات -
تاریخ انتشار 2008